更多>>精华博文推荐
更多>>人气最旺专家

李鹏涛

领域:药都在线

介绍:备注:从现状—原因—措施三个内容填写。...

张曙

领域:红网

介绍:在纯种暗红眼♀×纯种朱红眼♂的正交实验中,F1只有暗红眼;在纯种朱红眼♀×纯种暗红眼♂的反交实验中,F1雌性为暗红眼,雄性为朱红眼。利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66

利来最给利的网站
本站新公告利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
bt9 | 2018-12-12 | 阅读(982) | 评论(72)
3、落款署名,日期。【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
hoa | 2018-12-12 | 阅读(605) | 评论(299)
本实验的关键步骤是什么?遵循了什么原则?R型菌转化为S型菌的实质:基因重组(含S)(含P)(三)噬菌体侵染细菌的实验(1)T2噬菌体的结构模式图1T2噬菌体(1)T2噬菌体的结构T2噬菌体是一种专门寄生在大肠杆菌体内的病毒(无细胞结构),头部和尾部的外壳都是由蛋白质构成,头部内含有DNA。【阅读全文】
mik | 2018-12-12 | 阅读(892) | 评论(603)
*主讲:贺旭梅一轮复习为什么RNA适于作DNA的信使?RNA也是由核苷酸连接而成,也能储存遗传信息。【阅读全文】
qmi | 2018-12-12 | 阅读(569) | 评论(528)
所见牧童/骑/黄牛,歌声/振/林越。【阅读全文】
bit | 2018-12-12 | 阅读(27) | 评论(344)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
8rd | 2018-12-11 | 阅读(495) | 评论(261)
专家表明,排名时采用的数据来源于公开信息,包括在世界卫生组织(WHO)以及全球信息库中搜集到的欧洲国家饮酒数据。【阅读全文】
xe9 | 2018-12-11 | 阅读(991) | 评论(892)
钱江晚报记者进行了调查。【阅读全文】
tpm | 2018-12-11 | 阅读(195) | 评论(332)
老师们也无一不在寻找着,尝试着,试图找到更高效的教学理念和教学方法,但囿于种种限制,积累的经验或者教训多数是散碎的片段,零散,不系统。【阅读全文】
利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66,利来娱乐w66
fn7 | 2018-12-11 | 阅读(530) | 评论(506)
由图1可知,我国执行计划生育政策后,开始人口自然增长率波动变化,然后持续下降,但始终大于4‰,说明人口规模是持续增加的。【阅读全文】
gxd | 2018-12-10 | 阅读(468) | 评论(267)
注意坐标原点abc000100(%)100(%)100802020204040406060608080①②③④Cabc000100(%)100(%)100(%)802020204040406060608080①②③④A下图是四个国家的人口出生率和人口死亡率图,判断:1、和德国人口死亡率、出生率相似的国家是A、①B、②C、③D、④A读图,回答3一4题3、1990年,该地的人口增长模式的类型是A、原始型B、传统型C、现代型4、与1982年相比,1996年该地A、人口大量外迁B、人口自然增长率升高C、本地劳动力相对不足D、城市化水平降低CC本资料来自于资源最齐全的21世纪教育网本资料来自于资源最齐全的21世纪教育网本资料来自于资源最齐全的21世纪教育网本资料来自于资源最齐全的21世纪教育网本资料来自于资源最齐全的21世纪教育网本资料来自于资源最齐全的21世纪教育网*【阅读全文】
zlc | 2018-12-10 | 阅读(885) | 评论(104)
请设计实验探究控制眼色的基因在X、Y染色体上还是在X染色体上,写出实验思路并预测结果及结论。【阅读全文】
6hi | 2018-12-10 | 阅读(870) | 评论(168)
中国文化复兴的必然选择探究升华结论:李大钊在《新青年》发表的《我的马克思主义观》陈独秀和青年毛泽东想一想:探究主题1中国文化复兴的必然选择中国近、现代史上的哪次运动实现了中华文化的历史转折,使中华文化由衰微走向复兴2、中国共产党人的探索1)马克思主义传入中国,是中华文化由衰微走向重振的重要转折点探究升华中国文化复兴的必然选择中国共产党坚持以马克思主义为指导思想,始终代表中国先进文化的前进方向2)当代中国:坚持和发展中国特色社会主义文化,才能实现文化强国的梦想。【阅读全文】
mya | 2018-12-10 | 阅读(128) | 评论(198)
“我们的招生是从小学四年级开始,孩子的理解力、思考能力、包括数学基础等,这些都会影响到编程学习,我们觉得从这个年龄段开始更合理。【阅读全文】
7an | 2018-12-09 | 阅读(351) | 评论(350)
青岛理工大学工学硕士学位论文2.66x10~,钢板已发生腐蚀,涂层防护性能变差。【阅读全文】
y7n | 2018-12-09 | 阅读(137) | 评论(857)
AbstractRegardingtothewellknownproblemsofinadequatesharingofmulti-sourced,heterogeneoustransportationinformationintheinformatizationprocessofChineseexpresswaynetwork,anontology-basedtransportationinformationintegrationplatformframeworkforexpresswaynetworkisproposed,basedonakitofoworkinXi’anasanapplicationscenario,,thespecificapplicationofinformationintegrationtechnol,theresearchresultsinthispaperisapplicableinthedevelopmentofChineseexpresswaynetwork,topromotetheabilityofcommonunderstandingandadequatesharingofmulti-sourced,heterogeneoustransportationdataamongexpresswaynetworksubsystems,thereforewillplayanimp,themainworkofthisdissertationcanbesummarizedasfollows:(1)Onthebasisofanalysisbetweentraditionalandontology-basedinformationintegrationmethods,anontology-basedinformynetworkinaspectsasstaticanddynamicinformation,theupperontologégédevelopedontologyoftheexpresswaynetwork.(2)Aninforma【阅读全文】
共5页

友情链接,当前时间:2018-12-12

利来国际w66.com 利来国际在钱服务 w66历来国际 利来国际w66 利来国际网址
利来国际手机客户端 w66.利来国际 w66.cum 利来国际老牌 利来娱乐国际最给利老牌网站
利来国际老牌w66 利来娱乐 w66利来娱乐 利来国际旗舰厅怎么 利来娱乐
利来国际app 利来国际ag国际厅 利来国际老牌 w66.con 利来国际最给力老牌
信丰县| 舒兰市| 漳州市| 大理市| 阳信县| 峨眉山市| 托克逊县| 高阳县| 沅江市| 延庆县| 沂水县| 兴文县| 张掖市| 秭归县| 正阳县| 瑞昌市| 舒城县| 苍溪县| 大冶市| 通渭县| 朝阳区| 湟源县| 岳西县| 越西县| 石渠县| 昆明市| 襄樊市| 广昌县| 准格尔旗| 肥乡县| 都江堰市| 西安市| 兴业县| 和平县| 怀集县| 华安县| 荥经县| 旬阳县| 永康市| 江安县| 杨浦区| http:// http:// http:// http:// http:// http://